12 research outputs found

    Keck Interferometer Nuller Data Reduction and On-Sky Performance

    Get PDF
    We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools

    The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck Telescopes

    Full text link
    We report interferometric observations of the semi-regular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner. The light was dispersed by a low-resolution spectrometer, allowing simultaneous measurement of the source visibility and intensity spectra from 8 to 12 microns. The interferometric observations allow a non-ambiguous determination of the dust shell spatial scale and relative flux contribution. Using a simple spherically-symmetric model, in which a geometrically thin shell surrounds the stellar photosphere, we find that ~30% to ~70% of the overall mid-infrared flux - depending on the wavelength - originates from 7-8 stellar radii. The derived shell opacity profile shows a broad peak around 11 microns (tau ~ 0.06), characteristic of Mg-rich silicate dust particles.Comment: Accepted for publication in ApJ Letter
    corecore